青島高三數(shù)學(xué)補(bǔ)課_期末數(shù)學(xué)考試知識(shí)點(diǎn)
小學(xué)數(shù)學(xué)謎語(yǔ)大全及答案
對(duì)天下上的一切學(xué)問(wèn)與知識(shí)的掌握也并訓(xùn)斥事,只要持之以恒地學(xué)習(xí),起勁掌握紀(jì)律,到達(dá)熟悉的田地,就能融會(huì)融會(huì),運(yùn)用自若。學(xué)習(xí)需要持之以恒。下面是小編給人人整理的一些數(shù)學(xué)的知識(shí)點(diǎn),希望對(duì)人人有所輔助。
一個(gè)推導(dǎo)
行使錯(cuò)位相減法推導(dǎo)等比數(shù)列的前n項(xiàng)和:Sn=aa+a…+an-
同乘q得:qSn=a+aa…+an,
兩式相減得(q)Sn=aan,∴Sn=(q≠.
兩個(gè)提防
(由an+qan,q≠0并不能立刻斷言{an}為等比數(shù)列,還要驗(yàn)證a0.
(在運(yùn)用等比數(shù)列的前n項(xiàng)和公式時(shí),必須注重對(duì)q=q≠類討論,防止因忽略q=一特殊情形導(dǎo)致解題失誤.
三種方式
等比數(shù)列的判斷方式有:
(界說(shuō)法:若an+an=q(q為非零常數(shù))或an/an-q(q為非零常數(shù)且n≥n∈N_),則{an}是等比數(shù)列.
(中項(xiàng)公式法:在數(shù)列{an}中,an≠0且a=an·an+n∈N_),則數(shù)列{an}是等比數(shù)列.
(通項(xiàng)公式法:若數(shù)列通項(xiàng)公式可寫(xiě)成an=c·qn(c,q均是不為0的常數(shù),n∈N_),則{an}是等比數(shù)列.
注:前兩種方式也可用來(lái)證實(shí)一個(gè)數(shù)列為等比數(shù)列.
直線的傾斜角
界說(shuō):x軸正向與直線向上偏向之間所成的角叫直線的傾斜角。稀奇地,當(dāng)直線與x軸平行或重適時(shí),我們劃定它的傾斜角為0度。因此,傾斜角的取值局限是0°≤α<
直線的斜率
①界說(shuō):傾斜角不是的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k示意。即。斜率反映直線與軸的傾斜水平。
②過(guò)兩點(diǎn)的直線的斜率公式:
注重下面四點(diǎn):
(那時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為;
(k與PP順序無(wú)關(guān);
2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:
方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).
,高三地理培訓(xùn)學(xué)校對(duì)于基礎(chǔ)知識(shí)框架了解不清楚,學(xué)習(xí)底子特別薄弱的同學(xué)來(lái)講,或許在校期間老師的進(jìn)度他已經(jīng)是跟不上的狀態(tài)了。那么這個(gè)時(shí)候?yàn)榱丝焖偬嵘约阂矠榱瞬煌献约核诎嗉?jí)的進(jìn)度,這類同學(xué)可以找一個(gè)能夠針對(duì)自己的學(xué)習(xí)進(jìn)度進(jìn)行系統(tǒng)學(xué)習(xí)的課外補(bǔ)習(xí)班,全面系統(tǒng)的提升自己的能力和成績(jī),這樣的話還是非常有用的。,(以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率獲得。
直線方程
點(diǎn)斜式:
直線斜率k,且過(guò)點(diǎn)
注重:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y當(dāng)直線的斜率為時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式示意.但因l上每一點(diǎn)的橫坐標(biāo)都即是x以是它的方程是x=x
函數(shù)的奇偶性
(若f(x)是偶函數(shù),那么f(x)=f(-x);
(若f(x)是奇函數(shù),0在其界說(shuō)域內(nèi),則f(0)=0(可用于求參數(shù));
(判斷函數(shù)奇偶性可用界說(shuō)的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);
(若所給函數(shù)的剖析式較為龐大,應(yīng)先化簡(jiǎn),再判斷其奇偶性;
(奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
復(fù)合函數(shù)的有關(guān)問(wèn)題
(復(fù)合函數(shù)界說(shuō)域求法:若已知的界說(shuō)域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的界說(shuō)域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的界說(shuō)域?yàn)閇a,b],求f(x)的界說(shuō)域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的界說(shuō)域);研究函數(shù)的問(wèn)題一定要注重界說(shuō)域優(yōu)先的原則。
(復(fù)合函數(shù)的單調(diào)性由“同增異減”判斷;
函數(shù)圖像(或方程曲線的對(duì)稱性)
(證實(shí)函數(shù)圖像的對(duì)稱性,即證實(shí)圖像上隨便點(diǎn)關(guān)于對(duì)稱中央(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;
(證實(shí)圖像CC對(duì)稱性,即證實(shí)C隨便點(diǎn)關(guān)于對(duì)稱中央(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C,反之亦然;
(曲線Cf(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(曲線Cf(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C程為:f(-x,-y)=0;
(若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒確立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;
(函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對(duì)稱;